Q: If f : G→G' is a homomorphism of a group G into a Group G' with kernel k, then k is यदि f : G→G' एक समूह G के अंदर समूह अन्त: श्रेणी समाकारिता है, अष्टि k है तब k होगा
A.
Not a subgroup of G / G का उपसमूह नहीं
B.
k = G
C.
k is normal subgroup of G G का प्रसामान्य उपसमूह k है
D.
None of these/ इनमें से कोई नहीं
Correct Answer:
Option C - If f is a homorphism of a group G into a group G' with Kernel k, then k is a normal subgroup of G.
C. If f is a homorphism of a group G into a group G' with Kernel k, then k is a normal subgroup of G.
Explanations:
If f is a homorphism of a group G into a group G' with Kernel k, then k is a normal subgroup of G.
Download Our App
Download our app to know more Lorem ipsum dolor sit amet consectetur adipisicing elit.
Excepturi, esse.
YOU ARE NOT LOGIN
Unlocking possibilities: Login required for a world of personalized
experiences.