search
Q: If f : G→G' is a homomorphism of a group G into a Group G' with kernel k, then k is यदि f : G→G' एक समूह G के अंदर समूह अन्त: श्रेणी समाकारिता है, अष्टि k है तब k होगा
  • A. Not a subgroup of G / G का उपसमूह नहीं
  • B. k = G
  • C. k is normal subgroup of G G का प्रसामान्य उपसमूह k है
  • D. None of these/ इनमें से कोई नहीं
Correct Answer: Option C - If f is a homorphism of a group G into a group G' with Kernel k, then k is a normal subgroup of G.
C. If f is a homorphism of a group G into a group G' with Kernel k, then k is a normal subgroup of G.

Explanations:

If f is a homorphism of a group G into a group G' with Kernel k, then k is a normal subgroup of G.